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Abstract

The oceanic neodymium isotopic composition (hereafter expressed as εNd) is modeled
for the Last Glacial Maximum (LGM) using the coarse resolution Ocean Global Cir-
culation Model NEMO–ORCA2◦. This study focuses on the impact of changes in the
overturning cell and circulation patterns between LGM and Holocene on εNd in the At-5

lantic basin. Three different LGM freshwater forcing experiments are performed to test
the variability in εNd oceanic distribution as a function of ocean circulation. Highly dis-
tinct representations of ocean circulation are generated in the three simulations, which
drive significant differences in εNd, particularly in deep waters of the western part of
the basin. However, mean Atlantic LGM εNd values are remain half a unit more radio-10

genic than for the modern control run. A fourth experiment shows that changes in Nd
sources and bathymetry drive a shift in the εNd signature of Northern end-members
(NADW or GNAIW glacial equivalent) that is sufficient to explain the shift in mean εNd
during our LGM simulations. None of our three LGM circulation scenarios gives a bet-
ter agreement with the existing εNd paleo-data, as the model fails in reproducing the15

dynamical features of the area. Therefore, this study cannot indicate the likelihood of
a given LGM oceanic circulation scenario. Rather, our modeling results highlight the
need for data from western Atlantic deep waters, where the εNd gradient in the three
LGM scenarios is the most important (up to 3εNd). This would also aid more precise
conclusions concerning the north end-member εNd signature evolution, and thus the20

potential use of εNd as a tracer of past oceanic circulation.

1 Introduction

Ocean circulation plays an important role in climate change since it is suspected to
be an amplifier of, or may even trigger, shifts between glacial and interglacial peri-
ods (Broecker and Denton, 1989; Charles and Fairbanks, 1992; Rahmstorf, 2002).25

The meridional circulation structure (Meridional Overturning Circulation – MOC) of the
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North Atlantic Basin redistributes heat to different latitudes. The southward transport
of cold water at depth towards the Antarctic circumpolar current as the North Atlantic
Deep Water (NADW) is compensated for by the northward transport of heat from the
south in surface and shallow waters. This Atlantic overturning cell is a dynamic element
of the oceanic thermohaline circulation (THC), acting on the atmospheric circulation5

and chemistry (CO2 in particular), which are directly involved in governing climate. An
ongoing problem for climatologists is to determine if the MOC will persist in the future
and therefore to determine what controls its strength and variability. Studying past cli-
mate situations can help to understand the factors involved in controlling the MOC and
clear up the role of the different forcings.10

The Last Glacial Maximum (LGM) occurred 21 000 years ago and lasted for at least
a few millennia and was a climate drastically different to today. Assessing how changes
in the different components of the climate system (atmosphere, ice, land, and in this
present study, MOC) control the overall climate is a fundamental question of deter-
mining which processes lead to different climate conditions. However, understanding15

the behaviour of past oceanic circulation, water-mass composition and flow patterns,
remains difficult due to the multiple factors that control the distribution of relevant paleo-
proxies. Different geochemical and isotopic paleo-tracers often give contradictory re-
sults (Lynch-Stieglitz et al., 2007) and up to three possible MOC scenarios are consid-
ered at LGM:20

1. a highly stratified basin with a water mass at a maximum depth of 2200 m (with
characteristics comparable to modern NADW; often referred to as Glacial North
Atlantic Intermediate Water, GNAIW), overlying a large volume of water that
originates from the Antarctic (which can be viewed as a more northward version
of modern Antarctic Bottom Water, AABW). This view was first suggested by25

cadmium to calcium ratios (Cd/Ca) and carbon isotopes (δ13C) preserved in
the fossilised shells of benthic foraminifera, which are used as proxies of the
past nutrient distribution (Marchitto and Broecker, 2006; Duplessy et al., 1988;
Curry and Lohmann, 1983; Charles and Fairbanks, 1992). Measurements of
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radiocarbon (14C) from benthic foraminifera suggest an older age for GNAIW at
the LGM (Keigwin, 2004), which implies a slower circulation, with deep water
ventilations times as great as 2000 years (Keigwin and Schlegel, 2002).

2. in contrast, other carbon isotope data (Curry and Oppo, 2005) and Cd/Ca data5

(Oppo and Rosenthal, 1994) suggest vigorous overturning was maintained,
with a penetration of AABW as far north as 60◦ N. Protactinium and thorium
isotopes (231Pa/230Th) seem to indicate shorter residence times for waters in
the Atlantic basin, which would confirm vigorous overturning at shallower depth
and weakened deep water ventilation (Yu et al., 1996; McManus et al., 2004).10

However, a large Pa/Th database suggests no large differences in the MOC
between modern and LGM (Asmus et al., 1999).

3. oxygen isotopes (δ18O) from benthic foraminifera allow the reconstruction of
water density at a given depth and suggest that during the LGM, the east-west15

δ18O gradient was at least reduced or even reversed (Lynch-Stieglitz et al.,
2006). These observations are consistent with a very weak GNAIW cell, but
contradict the scenarios of circulation proposed by the other proxies that are
mentioned above (Lynch-Stieglitz et al., 1999). On the other hand, alternative
Cd/Ca data support a strong slowdown in the LGM MOC (Oppo and Fairbanks,20

1987; Charles and Fairbanks, 1992; Broecker, 2002).

All these conclusions have to be taken cautiously due to the scarcity of the data
characterizing the LGM and to the fact that the behaviours of these proxies in the
past remain partially misunderstood (Lynch-Stieglitz et al., 2007). Overall, there is25

currently no consensus on the structure of the LGM ocean circulation. Apart from the
necessary acquisition of more field observations, a better knowledge of the processes
forcing glacial circulation would be aided by the representation of different circulatory
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proxies in numerical models. This has motivated the recent modelling of proxies at
LGM (Henderson et al., 1999; Siddall et al., 2005), in order to better constrain the
behaviour that results in the observed variability in the temporal distribution of such
proxies.

Nd isotopic composition (hereafter expressed as5

εNd=((Nd143/Nd144)sample/(Nd143/Nd144)CHUR−1)∗10 000, where CHUR is the Chon-
dritic Uniform Reservoir, which represents the present day average earth value,
(Nd143/Nd144)CHUR=0.512638 (Jacobsen and Wasserburg, 1980)), behaves conser-
vatively in the ocean, aside from any lithogenic inputs, and is unaffected by biological
cycles. Variations in εNd have been measured in different water masses of the same10

water column, and this parameter has been used as a water mass tracer (Piepgras
and Wasserburg, 1982; Jeandel, 1993; von Blanckenburg, 1999; Lacan and Jeandel,
2004; Amakawa et al., 2004). The modern Atlantic basin is characterized by two
well-identified end-members: namely, a negative signature (−13.5±0.5εNd; Piepgras
and Wasserburg, 1980; Piepgras and Wasserburg, 1987; Lacan and Jeandel, 2005a)15

of NADW acquired in the Nordic and Labrador seas and also a less negative signal
from the southern water masses (AAIW and AABW, εNd=–8±1; Piepgras and Wasser-
burg, 1982; Jeandel, 1993). The evolution of εNd along the modern day THC, from
negative values in the north Atlantic, to positive values in the Pacific, makes εNd a
good candidate as a tracer of paleocirculation, and of the THC in particular. Planktonic20

or benthic foraminifera, benthic ferromanganese nodules and crusts, as well as
iron-manganese oxides coatings are carrier phases that record the variations in εNd
from surface and bottom water mass signatures over different time scales (Elderfield
et al., 1981; Vance and Burton, 1999; Albarede et al., 1997; Abouchami et al., 1999;
Rutberg et al., 2000; Bayon et al., 2002; Van De Flierdt et al., 2004; Piotrowski et al.,25

2004). For example, Piotrowski et al. (2004) measured the Nd isotopic composition
(IC) preserved in Fe-Mn oxides from LGM to mid Holocene in the South Atlantic,
providing the first determination of circulation variations using Nd isotopic data at
LGM. Nevertheless, current knowledge of Nd oceanic cycle is far from complete and
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uncertainties remain concerning the ability of εNd to trace paleo-circulation. Indeed,
this last study assumes no change in the εNd in both northern and southern end-
members at the LGM. Accordingly, the temporal variations observed are interpreted as
changes in circulation and the relative contribution of the two end members. However,
Lacan and Jeandel (2005a) demonstrated that the change in water mass mixing5

during the formation of the northern water mass component may directly affect the IC
of this end-member. These authors also suggested that exchange of Nd between the
sediment deposited on the margins and the seawater occurred. This process, named
“Boundary Exchange” (dissolved/particulates interaction along the continental margin,
hereafter referred as BE) is likely efficiently modifying the signature of water masses10

flowing along these margins (Jeandel et al., 1998; Lacan and Jeandel, 2005b; Arsouze
et al., 2007). Therefore, the change in the continental weathering regime (which will
alter sediment fluxes and the type of material deposited along the continental margin;
Vance and Burton, 1999; Reynolds et al., 2004), as well as a shift in the sites of deep
water formation to lower latitudes (Ganopolski et al., 1998) are likely to affect the Nd15

isotopic composition of the end-members. Therefore, a hypothesis of Nd end-member
signatures that are invariant in time may not be robust.

In this study, we use a modelling approach to reconstruct the global scale distribution
of εNd at the LGM. Our aim is to investigate the extent to which the observed temporal
variation in εNd data reflects changes in either the thermohaline circulation, or the sig-20

natures of the two end-members, or some combination of the two. We therefore test
the evolution of εNd distribution under different representations of the LGM oceanic cir-
culation generated by the IPSL (Institut Pierre-Simon Laplace) coupled model. Firstly,
the characteristics of this model and the dynamical features of the different simulations
performed are described. We then present εNd distributions for each run, in order to25

compare the changes in simulated circulation between LGM and modern state. Fi-
nally, we compare the output with the available data and evaluate the importance of
the different processes that generate εNd distribution at the LGM.
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2 Simulation description

All atmosphere-ocean simulations used in the present study are performed with the
IPSL CM4 model (Ocean Atmosphere Global Circulation Model – OAGCM) developed
at Institut Pierre Simon Laplace (Marti et al., 2006). The modules of this coupled model
are LMDz.3.3 (LMD; Hourdin et al., 2006) in a 3.75◦×2.5◦ resolution for the atmosphere5

circulation, the ocean part is the NEMO model in its coarse resolution ORCA2, (LO-
CEAN; Madec, 2008), and the associated sea ice component is represented by the LIM
model (UCL-ASTR, (Fichefet and Maqueda, 1997; Goosse and Fichefet, 1999). The
three constituent parts of the OAGCM (ocean, atmosphere and sea ice) are coupled
using the OASIS coupler (CERFACS; Valcke, 2006).10

The control simulation (modern run, cf. Table 1 and Fig. 2) is the pre-industrial sim-
ulation run for the recent IPCC exercise (IPCC, 2007, http://ipcc-wg1.ucar.edu/wg1/
wg1-report.html). The MOC in this simulation is relatively weak (≈10 Sv) compared to
the most recent evaluations (Swingedouw et al., 2007). This shortfall in the modern
MOC is partly explained by the lack of convection in the Labrador Sea.15

For the LGM simulations, the land-sea mask, topography and ice-sheet extent are
prescribed according to the Peltier ICE5G reconstruction (Peltier, 2004). Accordingly,
ice sheets cover Hudson Bay, the Baltic Sea, the Bering Strait and the Barents Sea.
In addition, sea level is reduced by 120 m, relative to the modern run, which causes
consequent changes in topography (extension of the Patagonian and New Found-20

land plateau) (Fig. 1). The boundary conditions have been set by reducing atmo-
spheric concentrations of CO2, CH4 and N2O to 185 ppm, 350 ppb and 200 ppb re-
spectively, and using the 21 ky BP orbital parameters, according to the PMIP2 proto-
col (http://pmip2.lsce.ipsl.fr). Three runs are been performed that use a river routing
scheme adapted for LGM conditions, i.e. addressing the impact of ice-sheets on river25

basins (Alkama et al., 2006; Alkama et al., 2008). The first simulation (LGMA) is the
reference LGM run, obtained with the boundary conditions listed above. In LGMA,
snow accumulates on the ice sheets and to close the freshwater budget, snow is re-
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distributed over three latitude bands, with limits at 90S/50S/40N/90N. The 40N limits
corresponds to the southernmost latitudes reached by icebergs during ice ages. In
each latitude band, the excess freshwater, which we define as calving, is integrated
and supplied to the ocean in the same latitude band. For the northern band, fresh-
water fluxes due to calving are delivered to the Atlantic and Arctic Oceans, but not to5

the Pacific. This simulation is characterised by a vigorous Atlantic MOC (18 Sv), 8 Sv
stronger than the control run (cf. Table 1). The second simulation, LGMB, is obtained
by redistributing all the freshwater that arises from calving into the northern latitude
band and results in a MOC of 14 Sv. Additional artificial calving is added in this north-
ern latitude band to last simulation, LGMC, which reduces the MOC to only 6 Sv. The10

additional freshwater added to the northern latitude band corresponds to 0.2, 0.28 and
0.4 Sv for LGMA, LGMB and LGMC, respectively (cf. Table 1). Even though changes
in fresh water forcing remain relatively small, a variety of representations of the MOC
result. LGMB is generally similar LGMA, where a dominant and vigorous water mass
from the north fills the basin, but in contrast to LGMA, bottom water from the south15

enters to more northerly latitudes in LGMB. The MOC in LGMC can be viewed as a
reproduction of one of the proposed LGM circulation scenarios (scenario 1), cf. above),
wherein the influence of southern component water is increased and the northern com-
ponent water flows south at shallower depth than current NADW (thus corresponding
to the GNAIW). In addition, we also performed a simulation with modern boundary20

conditions but retaining the LGM land-sea distribution. Since a change in bathymetry
induces a change in the definition of continental margin, and thus a change in Nd in-
puts, this simulation, hereafter referred as modernM, tests the sensitivity of the εNd
distribution to such factors (cf. next section). Circulation changes induced by using
LGM bathymetry are not significant. AABW is slightly weaker than during the control25

simulation (≈3 Sv compared to 5 Sv), but the main structures and characteristic depths
are conserved.

All LGM scenarios of ocean circulation were generated at the “Laboratoire des Sci-
ences du Climat et de l’Environnement” (LSCE), and a detailed description of these
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simulations is to be published soon. A summary of the simulation characteristics and
the overturning sections are provided in Table 1 and Fig. 2.

3 εNd modelling

εNd is simulated following the approach developed in Arsouze et al. (2007), which
provides a detailed description of the parameterisation. The oceanic εNd distribution5

is generated by a passive tracer model, using pre-computed advective and diffusive
fields (Ethé et al., 2006). The only source/sink term taken into account is BE, which
is parameterized as a relaxing term towards the continental margin εNd value. The
relaxing time used varies from six months in surface to 10 years at 3000 m depth, since
this vertical configuration provides the best results for the modern ocean (Arsouze et10

al., 2007).
Since the decay of the radioactive isotope 147Sm to 143Nd takes much longer (half

life of 106 Gy) than the studied time interval (about 20 ky), we assumed that there was
no evolution in the isotopic signature of the margin due to natural radioactive decay
between LGM and Holocene. In addition, since no major tectonic events have occurred15

since the LGM, the overall margin εNd distribution was likely very similar to that of today.
Therefore, we apply the margin εNd composition established by Jeandel et al. (2007)
for our LGM simulations. Finally, we assume that the vertical parameterisation and
relaxing time that characterizes BE is unchanged at the LGM. This last hypothesis
has to be taken cautiously, since terrigenous fluxes were possibly higher at the LGM20

(Franzese et al., 2006). However, until the impact of these fluxes on BE can be better
constrained, we base our hypothesis on Tachikawa’s results (Tachikawa et al., 2003),
which found a minor impact of terrigenous flux variations on the εNd signatures of deep
water masses.

We acknowledge that this simplistic modelling parameterization can only resolve the25

first order representation of the oceanic εNd distribution and we do not attempt to sim-
ulate the full oceanic Nd cycle. However, it successfully reproduces the modern εNd
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composition of the major ocean water masses (Fig. 2; and Fig. 5 in Arsouze et al.,
2007) and thus it appears to be a potential tool with which to investigate the impact of
variations in circulation and bathymetry on the distribution of εNd and the end-member
signature in the Atlantic.

4 Results5

The section used here to present the εNd distribution in the simulations has been cho-
sen to fit the classical western basin section, and to compare with the only available
data in the south (Piotrowski et al., 2004).

The modern simulation produces a εNd distribution that is in good agreement with
the existing data, even if slightly too radiogenic and has a εNd composition of −11.510

and −7 for NADW and AABW, respectively (which favourably compare to −13.5 and
−8 respectively, for the data, cf. Fig. 3). ModernM yields a more radiogenic mean
εNd distribution than the control run (+0.5εNd). The largest anomalies are observed
in surface waters and at depth for the formation site of the northern end-member (+1
and +2εNd, respectively) (Figs. 3 and 4). This anomaly is subsequently propagated15

southward via the deep western boundary current.
The three LGM simulations produce a εNd distribution that is somewhat similar to

the modern distribution. LGM surface, intermediate and bottom waters are radiogenic
(−5.5 to −8εNd), and sandwich a more negative εNd (−8 to −10εNd) deep water mass
from the north. Despite significant changes in ocean circulation during our scenarios,20

the global mean LGM simulated εNd in the Atlantic basin are only 0.5εNd more radio-
genic than the modern scenario (Table 1, Fig. 2). Nevertheless, important changes are
observed locally. For example, during simulations LGMA and LGMB (which exhibit a
strong NADW), as well as for simulation LGMC (typified by weak GNAIW), the northern
end-member is up to 3εNd more radiogenic than for the control simulation (εNd=−12.525

for control run, εNd=−10.5 for LGMB and εNd=−9.5 for both LGMA and LGMC). Fur-
ther south (20◦ S), this northern end-member still remains 1εNd more radiogenic, with
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very few differences between each LGM simulation.
The εNd composition of the bottom water masses of the Atlantic basin is directly

related to the relative influence of the northern and southern end-members. LGMA,
simulating a deep and robust NADW cell with a negative εNd signature, displays the
lowest bottom values whereas LGMC, which represents a dominant radiogenic AABW5

in the basin, has the highest values. LGMB, with a water-mass composition that is
intermediate between LGMA and LGMC, unsurprisingly has an intermediate εNd distri-
bution at the bottom. It can also be noted that the overturning circulation in LGMA and
LGMB is so vigorous that it propagates the positive signature from southern surface
and intermediate waters to northerly latitudes (up to +1.5εNd, Fig. 3) and therefore10

influences the signature of the northern end-member. In addition, LGMC simulates
large differences in εNd between the western and eastern parts of the Atlantic basin
(Fig. 4). Since AABW preferentially flows in the western part of the Atlantic basin, the
negative εNd signature of GNAIW during LGMC is reflected only in the eastern part.
This east-west gradient in εNd is not observed in the other LGM simulations, due to the15

predominant influence of northern water masses across the entire Atlantic basin.
The isotopic composition of the Atlantic sector of the Southern Ocean (south of 30◦ S)

is also between 0.5 and 1εNd more radiogenic during the LGM, relative to the modern
control run. This is due to an increased influence of the more radiogenic south Pa-
cific water masses when the importance of the Antarctic Circumpolar Current (ACC) is20

greater. LGMA is typified by a more vigorous ACC circulation than LGMC, while LGMB
is intermediate. Accordingly, the most positive signature of AABW in the Atlantic is
obtained for the LGMA and LGMB simulations (Fig. 4).

We finally note that the core studied by Piotrowski et al. (2004) is located in a region
of important εNd gradient (Fig. 4).25

319

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/4/309/2008/cpd-4-309-2008-print.pdf
http://www.clim-past-discuss.net/4/309/2008/cpd-4-309-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
4, 309–333, 2008

Neodymium
modelling

T. Arsouze et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

5 Discussion

The simulated εNd never differs by more than ±3 units between the three LGM simula-
tions. In addition, when εNd is averaged over the whole basin, the resulting difference
between each set of two simulations never exceeds +0.1εNd (Table 1). This shows that
the average isotopic composition is not drastically influenced by the different circulation5

schemes under our parameterization scheme. However some clear tendencies can be
underlined from these simulations.

Firstly, the isotopic composition of the whole Atlantic basin is +0.5εNd more radio-
genic for modernM simulation than for the control run. Hence, the εNd signature of the
end-members is likely affected by changes in bathymetry and the modification of Nd10

sources. This is probably due to the presence of ice sheets situated over Barents Sea,
Hudson Bay and even Baltic Sea, that could prevent BE and shorten residence time
with some very negative εNd margins (respectively −15, −25 and −18, Jeandel et al.,
2007). The closure of Bering Strait, that prevents radiogenic waters from the North Pa-
cific from entering the Arctic basin, appears to play a negligible role as the flux involved15

is only important locally. LGM topography and the presence of ice sheets in the north
causes variability in the exchange of Nd between water masses and continental mar-
gins and therefore drives a change in εNd for the northern end-member. In contrast, the
southern end-member remains virtually insensitive to any change in bathymetry (less
than +0.2εNd variation, during simulation modernM), while the three LGM scenarios20

result in AABW that is up to 0.7εNd more radiogenic (Fig. 3). This difference might
be explained by changes in circulation, and more particularly by the ACC strength that
mixes both the Atlantic and the more radiogenic Indo-Pacific waters to compose the
southern end-member signature, as suggested by previous works, (Duplessy et al.,
1988; Charles and Fairbanks, 1992; Oppo and Rosenthal, 1994).25

While the measured LGM εNd absolute value of −6.5 (Piotrowski et al., 2004) is al-
most reproduced in all three LGM simulations, the measured gradient between modern
and LGM (+3εNd in the data) is not fully represented (only +1εNd at maximum, Fig. 3).
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It is encouraging that we simulate the correct trend in εNd between modern and LGM,
but the amplitude of the variation remains too low. We can ascribe this deficiency to
the poor model resolution, which is therefore unable to reproduce all the processes of
AABW propagation and formation along the Antarctic margin. This means the model
falls short in characterizing the εNd composition of AABW. It is a classical problem of5

coarse resolution OGCM (Dutay et al., 2002).
The location of the core studied by Piotrowski et al. (2004) is situated in an area of

rough topography, and is influenced (in the model) by a variety of factors aside from
the relative influence of AABW and GNAIW. For example, ACC strength and asso-
ciated sediment transport, variation of Indo-Pacific waters entering the basin via the10

Agulhas current (Franzese et al., 2006), are not fully resolved in the model. A higher
degree of confidence in the LGM circulation changes based on the distribution of εNd,
could be obtained by studying temporal variations of bottom waters west of the mid
Atlantic ridge, where the AABW preferentially flows. This area is more representative
of the water mass influences in the basin, with a gradient directly dependant on the15

end-members contribution. Indeed, the signature of bottom waters in LGMA is rep-
resentative of the northern end-member (εNd=−10.5), whereas southern component
signature (εNd=−7.5) can be observed in simulation LGMC.

There is an urgent need to constrain the end-member isotopic composition at the
LGM. This critical question is the key in evaluating the potential of εNd as a water20

mass tracer as function of time. This would also provide complementary information if
used together with other chemical and isotopic paleotracers. The present study clearly
suggests a difference of at least +0.5εNd when compared to present. However, Van de
Flierdt et al. (2006), measured Nd variations in deep-sea coral from the New England
Seamounts during Younger Dryas (short time period at 11/13 kyr BP with a suspected25

similar oceanic circulation regime as LGM; Keigwin and Schlegel, 2002; Keigwin, 2004)
and found signature of surface (−14.5εNd) and deep waters (−13/−13.5εNd) similar to
present surface water and NADW signature, respectively. They therefore concluded
that there was likely no variation in the composition of end-members with time.
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A depth profile of εNd at LGM in the western part of the Atlantic basin would allow a
clear statement about the signature of the NADW change and bottom measurements
would provide a confirmation concerning the penetration of AABW in the basin, since
it is suspected to flow northward as far as 60◦ N (Curry and Oppo, 2005).

6 Conclusions5

Using a simple parameterisation that resolves the first order global εNd composition in
an OGCM, we have tested the impact on εNd of different circulation scenarios in the
Atlantic for the LGM, relative to a modern control run.

Run modernM (LGM land-sea mask with modern forcings) shows that the presence
of ice sheets, without significant circulation variation, affects the IC of the basin, and10

generates changes in mean εNd of +0.5 units. This is due to a shift in the composition
of the end-members. The northen end member, in particular, does not acquire its
modern negative signature, due to prevented exchange with highly negative margins
protected by ice sheets at the LGM. On the other hand, the southern end-member is
not significantly more radiogenic in modernM than during the control run.15

The main characteristics of the three LGM simulations are the same (isotopic com-
position of the end-members, structure of the water masses that compose the basin),
even though the circulation changes drastically from one to another. However, im-
portant changes in εNd of the bottom waters in the western basin can be observed,
that are coherent with the penetration of southern water mass and relative influence20

of components. As in modernM, mean εNd is 0.5 more radiogenic than modern run,
suggesting that although circulation changes do not play a key role in end-members
εNd acquisition, they are important in redistributing the characteristics of the basin.

So far, very few data concerning εNd at LGM are available. The change in isotopic
composition between present and LGM observed in the data provided by Piotrowski et25

al. (2004) is partially reproduced by the model, but the location of the core is not the
most relevant place for a clear comparison with the coarse resolution model used in
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this study. This is because of a very complex bathymetry and dynamics within the area
of the core. Rather, we propose a comparison between model and data in the north
of the western part of the basin, where the composition of the end-members can be
easily constrained, and the only factor controlling the distribution of εNd is the relative
influence of the northern and southern components.5

Substantial progress has to be made in: 1) the understanding of the Nd oceanic
cycle, so as to better reproduce the features that drive the temporal evolution in the
εNd, 2) in LGM modelling of ocean circulation, since simulations LGMB and LGMC
were produced via the artificial addition of freshwater, and moreover, other scenarios
suggested by other studies (for example scenarios 2) and 3) mentioned in the introduc-10

tion) cannot be tested because they have not produced by OAGCMs; and 3) there is a
need to obtain more data for Nd isotopes in order that Nd can be a consistent tool for
intercomparison with other paleo proxies; and modelling effort still has to be provided.
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Table 1. Main characteristics of the simulations. Modern run is the reference run obtained with
pre-industrial run forcings. Simulations LGMA, LGMB and LGMC are all produced with LGM
forcings and boundary conditions (orbital parameters, ice sheets coverage and subsequent
sea ice level drop, realistic river routing, atmosphere chemistry composition). The three LGM
simulations are obtained with different calving fluxes (treatment of snow accumulating on the
northern mid latitude ice sheets, which excess is redistributed over the ocean to close the
freshwater budget). ModernM simulation is obtained with modern forcing and LGM land-sea
mask.

Experience Calving (freshwater from ice sheets melt North component South component Mean εNd
Name redistributed north of 40◦ N) water flow water flow of the basin

Modern – 9 Sv 5 Sv −9.1
ModernM – 9 Sv 3 Sv −8.7
LGMA 0.2 Sv 18 Sv 1 Sv −8.6
LGMB 0.28 Sv 14 Sv 2 Sv −8.7
LGMC 0.4 Sv 6 Sv 4 Sv −8.7
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Fig. 1. Bathymetry and topography map at LGM, with modern continent contours. Sea level
was 120 m lower at LGM than at Holocene (inducing larger Patagonian or New Foundland
Plateau), with present oceanic regions covered by ice sheets (enclosed by thick line) over the
Barent Sea, Hudson Bay or Nordic Sea, and the closure of the Bering Strait. The black line
represents the trajectory of the vertical section in Fig. 3. Seawater εNd available data at LGM
is represented by a star (provided by and Piotrowski et al., 2004).
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Fig. 2. Meridional overturning streamfunction (in Sv) of the Atlantic basin, north of 30◦ S, and
of global ocean south of 30◦ S, for all simulations.
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Interactive DiscussionFig. 3. Vertical εNd section along the track represented in black in Fig. 1 for modern simulation
(top panel). Variations between this reference modern run and modernM, LGMA, LGMB and
LGMC simulations. Data are superimposed in circles with the same colour code than simulation
output. LGM data are provided by Piotrowski et al. (2004). The color scale is non linear.
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Fig. 4. Map of εNd difference between reference run (modern run) and the four other runs
(modernM, LGMA, LGMB, LGMC), averaged between 3000 and 5000 m. Data are superim-
posed in circles with the same colour code than simulation output. LGM data are provided by
Piotrowski et al. (2004). The color scale is non linear.
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